
A model and a pattern for data collection on collaborative actions
in CSCL systems

Alejandra Martínez1, Luis A. Guerrero2, César A. Collazos3

1 Dept. of Computer Science, Universidad de Valladolid, Valladolid, Spain
amartine@infor.uva.es

2 Dept. of Computer Science, Universidad de Chile, Santiago, Chile
luguerre@dcc.uchile.cl

3 Dept. of Systems, Universidad del Cauca, Popayán, Colombia
ccollazo@unicauca.edu.co

Abstract

There is an increasing interest in the CSCL field towards the definition of frameworks that support analysis of
interactions in order to understand or to regulate collaboration. These analysis processes draw on the automatic
collection of data about the collaborative processes for its further analysis by manual or automatic means.
Despite this interest, current proposals solve this automatic collection using ad-hoc solutions, and thus they do
not consider how this problem can be solved in a modular and reusable manner, so that it could be applied to
different collaborative situations and analytical approaches. This paper shows how CSCL can benefit from the
field of software engineering by the adaptation of the command design software pattern to the problem of CSCL
data collection. In order to perform this adaptation, we draw on a model of interaction that defines the concept of
collaborative action as the basis of any interaction, which is also described in this paper. These two aspects: the
concept of collaborative action and the adaptation of the command pattern to the problem of CSCL data
collection will allow us to address conceptual as well as implementation issues related to the modelling of
interactions in CSCL.

1 Introduction
Analysis of interactions has become a main research topic in the last years in CSCL. However, research has
mainly focused on conceptual issues [8] or on the development of experimental prototypes focused on testing a
particular collaboration support model [7]. While these approaches have shown the interest of this CSCL work
line, the area has so far neglected the problem of the design of these systems from a software-engineering point
of view. We claim that this is an important topic, as we need to provide the developers with conceptual and
practical tools that facilitate the desired integration of analysis functions in CSCL systems. This integration has
to meet software quality criteria, such as modularity and reusability. We propose in this paper to borrow from the
software design patterns point of view [5] in order to identify and propose design solutions that meet these
objectives.

The collaboration management cycle proposed in [7] defines the phases that these collaboration support
tools have to go through in order to perform their tasks. The first of these phases consists on the data automatic
collection about the collaborative processes. We are going to focus on this phase, as it is the one where the
interface between the functions oriented to mediate collaboration and to perform the analysis is established.
Moreover, being the first phase, is the one on which the rest of the analysis processes rely.

In order to apply a software pattern to the data collection in CSCL, some steps are needed in advance. We
need to provide an interaction concept that is both appropriate for the domain as well as operationally
representable by a computer. We propose the concept of collaborative action to fulfill this objective. Once this
concept is defined and described, we propose how a well-known software design pattern - the command pattern
[5],- can be used to implement the data collection in systems that follow the collaboration management cycle.

This work is part of ongoing research performed by the authors that aims at the definition of a component
based framework for the definition of reusable, modular and configurable solutions for the implementation of

collaboration support systems [1]. It also draws on previous authors’ experience in the proposal of a patterns
system for CSCW applications [6].

The rest of this paper is structured as follows: section 2 presents the concept of collaborative action, and
section 3 presents its computational representation using an UML diagram. Then, section 4 introduces the
command design pattern and how a logging tool in a CSCL context can use it. Finally, section 5 presents the
main conclusions and further work.

2 Collaborative action concept
The concept of collaborative action is not easy to define. Although it has been extensively used in the literature,
either its meaning has been taken for granted or it has been defined specifically within the context of each
approach. The Merriam-Webster's Collegiate Dictionary defines interaction as “mutual or reciprocal action or
influence”. Therefore, interactions can be conceptualised as actions that comply with a specific characteristic:
reciprocity. Then, we are to answer what means reciprocity in our CSCL context and how it can be detected. In
dialogue-based analysis, reciprocity seems to be an easy issue, if we assume that any utterance is an interaction.
However, several authors have shown that this is a rather simplistic view. [3] states that the “degree of
interactivity between pairs is not defined by the frequency of interactions, but for the degree in which they have
an influence in the cognitive processes of participants”, which gives an idea of the complexity of the concept.
However, this statement can be challenged for two reasons. On the one hand, it is difficult to apply operationally.
On the other hand, it focuses on the cognitive view of interactions, leaving apart the participatory aspects, which
we must consider when we want to study interactions in all their dimensions. Another well-known challenge to
the approaches that rely on explicit interactions is the presence of silence in many situations of real
collaboration. Indeed, silence can be almost as significant, if not more, than explicit utterances [8], and therefore
we should not rely exclusively on explicit discourse, but include actions when performing analysis.

In conclusion, we need a definition of interaction able to deal with actions and discourse, covering cognitive
and participatory aspects of interaction, simple to process and able to deal with silence and inactivity. Taking this
into account, we propose the following definition for interaction as “an action that affects or can affect the
collaborative process. The main requirement for an action to be considered a possible interaction is that the
action itself or its effect can be perceived by at least a member of the group distinct of the one that performed the
action”. It provides a generic view of interaction, without restricting it to a particular source of data or analytical
perspective, and gives an operational criterion to select appropriate input for interaction analysis. It is also able to
deal with the aforementioned problem of silence.

Before we continue with the rest of the proposal, we want to point out that the study of human action from a
situated standpoint is rather different from the study of behavior in the conductivist paradigm. In order to be fully
understood, human action needs to consider the context in which it is taking place [10]. Thus, representation of
collaborative action from a situated learning perspective needs to consider context, which is in fact an open
question in the modelling and analysis of human action. Next section will elaborate on this issue.

3 Computational representation of collaborative action
Once we have presented the concept of collaborative action, we will present our proposal for its computational
representation in an open and standard format. As mentioned above, there are several issues one must consider
when trying to model interactions. First, we have to face the problems related to the modelling of context in
collaborative situations. Next, we have to provide a classification of collaborative action that fits the definition
we have presented in the previous section. Section 3.1 will ellaborate on the representation of context, while
section 3.2 will present the three main types of action we have identified.

3.1 Context representation

Although research in CSCL currently agrees on the need of considering context when interpreting human
action, it is an open issue how this is to be done, and what elements should be considered when modelling it,
especially from a computational perspective. Normally, this issue is solved depending on each particular
situation, and there are few proposals of a generic representation of context.

A possible exception to this rule is the use of Activity Theory as a framework for the activity representation
in its social context [4]. Although we agree that this approach is being successful at broadening the analytical

perspective of researchers, we claim that its concepts are rather generic, and need to be complemented with
information related to the pedagogical context in which the learners are interacting. As an alternative, we
propose to use the concepts of the DELFOS framework for the modelling of context in collaborative learning.

DELFOS was developed specifically for the definition of CSCL situations, taking into account social,
pedagogical, and technological issues. It presents a model of collaborative situations, and has been validated by
its use in the design of several applications [9]. It proposes the concept of situation to model the general features
of a learning environment, including learning objectives, number of expected participants, metaphors, etc.
DELFOS provides for the definition of users, roles, objects and groups that intervene in the situations. All these
elements are represented in the model, as shown in figure 1.

3.2 Collaborative action representation

The second aspect we face in our proposal is to provide a generic and operational taxonomy for the
representation of collaborative action. As mentioned beforehand, existing approaches focus on the representation
of a single feature of the interaction, which hinders the desired integration of different sources of data. We aim at
integrating dialog and action, as well as automatic and manually collected data in a common structure, by means
of a new classification that focuses on the actors that take part in interactions. The main advantage of this
approach is that it easily accommodates to the collected data in each system for each type of interaction.

The proposal distinguishes between direct, indirect and participation-oriented interactions (see figure 1):

Direct interactions. They represent the typical interaction idea, with a source and one or more receivers. It
can be mediated by a channel, and may specify its content, which will normally, but not necessarily, be a
dialogue representation.

Indirect interactions: This interaction is characterised by being mediated by an object, and therefore, it is the
more common in shared workspace environments.

Participation: As an action that has no object neither receiver. Represents a generic intervention in a
collaborative environments.

ParticipationIndirectObject 11

Activity

Di rect

Situation

1..*1..*

1..*1..*Role 0..*0..*

Group

0..*0..*

0..*0..*

is composed by

User

Receives

1..*1..*

1

0.. *

1

0.. *

0.. *0.. *

belongs to

Session
1..*1..*

Clockdate

Action

1..*1..*

1

0..*

1

0..*

Creates timestamp

Fig. 1. Model of collaborative action. It shows the classes related with the context as well as the main

types of collaborative action we have identified

Although this model is valid for face-to-face representing actions as well as those that are performed
through the computer, we will restrict our scope to the latter. These automatic actions will always correspond to
a command (or set of commands) executed by the CSCL application in response to an event (or to a set of them).
Therefore, we have to think on how the commands are to be implemented in the application in order to facilitate
the collection of actions. This solution has to be generic, so that it can be adapted to different types of actions
and to different CSCL situations. It also has to provide independence between the code of the CSCL application

and the code of the collection of data, as they are different functionalities and it is desiderable that one of them
can be modified without affecting the other. Next section presents a particular software pattern called the
command pattern that meets these requirements, and how it can be applied to solve the logging of actions.

4 Adaptation of the command pattern for the collection of actions
The command design pattern is a recommendation for the implementation of all the commands of an application
in order to promote independence between the sender of a request and its receiver. The pattern proposes to
implement all the commands as objects with a method Execute(), which is the one that fulfills the command
functionality. The set of these command objects constitutes the 100% of the functionality of the application, i.e.,
everything that the application has to do, including any action and the data generated by it.

As shown in figure 2, the key feature of this pattern is an abstract Command class, which declares the
interface for executing operations, which in its simplest form includes an Execute() operation. The concrete
Command (ConcreteCommand) classes are declared as subclasses of the abstract Command and are in charge of
implementing its interface. Each ConcreteCommand class specifies the Receiver of the command by means of an
instance variable that stores it. The Receiver can be any class that has the knowledge to fulfill the request.
Finally, the Invoker is responsible of calling the Execute() operation in the Command interface.

The interaction between the objects in this pattern works as follows: The Client creates a Concrete
Command object and sets its Receiver. The Invoker stores the Concrete Command object that has been
instantiated, and issues a request by calling Execute() on the Command object. Then, the ConcreteCommand
object invokes operations on its Receiver to carry out the request.

This pattern can be easily adapted to support the collection of data by adding a logical is_loggeable instance
variable to the abstract Command class. This acts as a switch: if it set to true, the action to which this command
corresponds will be logged; if it is false, the action will not be logged for its further processing. The logging
processes are performed by the Logger class, that receives the command data and represents it in the desired
format using the WriteAction() method. Normally, the output is a text file, but it can take any other structure that
is convenient for the subsequent analysis processes. Therefore, as it can be seen in the figure, a Logger class can
be considered as a special type of Receiver that is invoked conditionally if the is_loggeable variable is set to true
in a particular command.

AbstractCommand
is_loggeable : Boolean

Execute()

Invoker

ConcreteCommand2
is_loggeable : Boolean

Execute()

Client

PerformCommand()

Application (Client)

sets

ConcreteCommand1
is_loggeable : Boolean

Execute()

receiver

creates

Logger

writeAction()

sets

logger

Fig. 2. The command pattern adapted to the collection of collaborative action. The figure on the left shows

the structure of the pattern and the figure on the right shows the interaction diagram

Once we have explained the pattern and its use for implementing the collection of data in a CSCL system,
let us now discuss how to integrate it with the concept of collaborative action that has been proposed beforehand.
As it has been mentioned, there is a link between the commands and actions. The semantic level of a
collaborative action is that of the usual commands one can expect to find in a CSCL application (create an
object, issue request, answer to a question, etc.). Sometimes these commands result from the aggregation of a set
of lower level or more fine-grained ones. Therefore, it is possible to define the relationship between the concepts
of command and collaborative action, either as a one-to-one relationship, or as an aggregation of commands that
constitute an action. The command pattern is also appropriate to log an action represented as an aggregation of

commands, as it is possible to assemble the low-level commands in a composite command class that represents a
particular type of collaborative action to be logged.

In conclusion, we see that the command pattern applies quite straightforwardly to the logging needs of a
CSCL application. A positive consequence of this is that we can take advantage from the benefits reported from
the use of this pattern. If we recall that the pattern was meant to decouple the object that invokes a command
from the one that performs it, CSCL applications that use it will not need to know how to log any of their
actions. This will be a responsibility of the concrete action classes. The pattern is flexible, as it allows for the
definition of new types of action (through a new specialisation of the abstract class Command). It facilitates also
the modification of the logging mechanisms by changing the Logger() class, that will not affect the code of the
CSCL application being logged.

Apart from these benefits, the pattern is the base of new functionalities that become very easy to implement
with its use. For example, a tool that shows the user (teacher, evaluator, and student) a menu with all the possible
actions performed in a particular CSCL tool. The user can choose which of these actions s/he wants to be logged,
which will be represented by a true value in the is_loggeable attribute of the class that represents that action. The
actions that are not meaningful for a particular analysis and therefore have not been chosen in the menu, are
omitted from the log by setting to false this attribute. This eventually results in a more accurate and easy to
analyse log than other does that simply collected all the data on the computer. This is only an example, that
illustrates the interest of taking care of software design quality issues in the elaboration of CSCL applications in
general, and of analysis functions in particular.

5 Conclusions and future work
CSCL needs to take software design issues seriously in order to enhance the quality of the applications in the
field. This is not a pure technical problem, as the modelling of actions which is at the core of the proposal needs
to take into account issues related to the context, types of interactions, etc. which draw on the needs of the
domain. This fact has been reflected in the definition of collaborative action we have presented in the paper.

We have shown with a simple example how conceptual issues have been applied to the computational
representation of action. Also how the use of a software pattern can facilitate and enhance the design of a core
functionality in CSCL such as the collection of data about collaboration for its further analysis.

The ideas presented in this paper are related with ongoing research of the authors. On the one hand, the
model of collaborative action has been used as the base for the definition of a DTD for the computational
representation of collaborative action logs in XML. The genericity of the model and the standard character of
this language we think that it could be used by other CSCL developers in order to produce interactions action in
a way that could be easily shareable between CSCL systems and evaluation tools. On the other hand, the pattern
presented in this paper is part of a more general research objective that aims at proposing a framework for the
design of CSCL systems that considers the specificity of the domain. In short term, an immediate objective is to
validate the ideas presented here by implementing a system that follows the command pattern as defined in this
paper.

Acknowledgements
This work has been partially funded by European Commission Project EAC/61/03/GR009 and Spanish

Ministry of Science and Technology Project TIC2002-04258-C03-02 and by the research mobility program
from the University of Valladolid.

References
[1] Asensio, J. I., Dimitriadis, Y. A., Heredia, M., Martínez, A., Álvarez, F. J., Blasco, M. T., and Osuna, C.

A., "From Collaborative Learning Patterns to Component-based CSCL Applications", European Conference on
Computer Supported Collaborative Work (ECSCW03), Workshop:From Good Practices to Patterns, Helsinki,
Finland, Sept. 2003.

[2] Dimitracopoulou A. & Petrou A. (2003) “Advanced Collaborative Learning Systems for young students:
Design issues and current trends on new cognitive and metacognitive tools”. In THEMES in Education
International Journal.

[3] Dillenbourg, P. (1999). Introduction; What do you mean by “Collaborative Learning”? In P. Dillenbourg
(Ed.), Collaborative learning. Cognitive and computational approaches (p. 1-19). Oxford: Elsevier Science.

[4] Fjuk, A., & Ludvigsen, S. (2001). The complexity of distributed collaborative Learning: Unit of analysis.
In P. Dillenbourg, A. Eurelings, & K. Hakkarainen (Eds.), Proceedings of European Conference of Computer
Support Collaborative Learning (EuroCSCL´2001); Maastricht. (p. 237-243). Maastricht: Maastricht MacLuhan
Institute.

[5] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

[6] Guerrero, L.A. and Fuller D. A Pattern System for the Development of Collaborative Applications.
Information and Software Technology, Vol.43, No.7, May, 2001, pp. 457-467

[7] Jermann, P., Soller, A., & Muehlenbrock, M.(2001). “From mirroring to guiding: a review of the state of
the art technology or supporting collaborative learning”. Proceedings of European Conference of Computer
Support Collaborative Learning (EuroCSCL´2001); Maastricht: Maastricht MacLuhan Institute.

[8] Littleton, K., & Light, P. (Eds.). (1999). Learning with computers: Analysing productive interaction.
London: Routeledge.

[9] Osuna, C., Dimitriadis, Y., & Martínez, A. (2001). Using a theoretical framework for the development of
educational collaborative applications based on social constructivism. In P. Dillenbourg, A. Eurelings, & K.
Hakkarainen (Eds.), Proceedings of EuroCSCL (pp. 577 - 584). Maastricht: Maastricht MacLuhan Institute.…

[10] Wilson, B., & Myers, K. (2000). Situated Cognition in Theoretical and Practical Context. In D.
Jonassen & S. Land (Eds.), Theoretical foundations of learning environments (pp. 57-88). Mahwah, N.J.:
Lawrence Erlbaum Associates.

